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Abstract. The information flow rates in a time series and between two time series are 
defined. These can be calculated from mutual information curves. These flow rates enable 
us to trace the origin of information flowing in an element of a system. This is actually 
done in a coupled system of one-dimensional maps, in which a flow of information is 
quantitatively measured. 

1. Introduction 

In understanding complex chaotic dynamics, a quantity called the KS entropy has been 
proved to be useful and essential (Kolmogorov 1958). Its origin is in information 
theory and it measures the rate of information production in dynamical systems. Since 
a high information production rate means a high degree of randomness, KS entropy 
is considered to characterise the randomness of chaotic dynamics. 

Recently, KS entropy has been reinterpreted as the rate of information flow in 
dynamical systems (Shaw 1981). It is a flow of information about initial conditions 
from lower figures of values of the variables in the system to higher figures. This flow 
is a different expression for a property of chaotic dynamics called ‘the sensitive 
dependence on initial conditions’. The existence of this type of information flow is a 
salient characteristic of chaotic dynamics. 

Although the concept of information flow is fascinating, the application of this 
concept is limited due to the fact that the generalisation of KS entropy as a flow rate 
is not obvious. This is because the definition of KS entropy is not based on the concept 
of ‘flow’. 

In this paper, we present a theoretical framework for the concept of information 
flow, and define various types of information flow rates which can be calculated by 
computers. They may be considered as the natural extensions of KS entropy. 

The term ‘flow rate’ means the amount of change in unit time. The amount of new 
information at a certain time t may be taken as a definition of information flow rate. 
But it is not enough for the information flow rates to simply compare the status of the 
system at times r and r - 1. This is because the same information which appears and 
disappears in an element of the system more than once must be counted only once. 
To obtain the net information flow rates, we must define the amount of new information 
at time t which has not appeared previously. 

To define a rate in this way, we must know which information is new at any 
particular time. A formal decomposition of information is useful here. In this decompo- 
sition, each term represents the amount of information at a particular time; we know 
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1406 K Matsumoto and I Tsuda 

exactly when the information represented by each term exists in the system. Using 
this decomposition, to obtain the information flow rates we simply have to collect 
appropriate terms in the decomposition. Moreover, we can derive the relation between 
them comparing the terms in them. 

The decomposition is explained in § 2. The definition of information flow rates 
and the derivations of the relations between them are in 0 3. In 0 4, we show that we 
can approximate the information flow rates defined in § 3 by calculable quantities. 
Section 5 contains an example of the calculation of information flow rates, thus 
demonstrating the feasibility of the formalism. 

2. Inductive definition of conditional mutual information 

In the decomposition, a central role is played by the conditional mutual information, 
which is defined below inductively. 

In this section, a variable like ik denotes a random variable which takes one of a 
number of finite states according to a particular probability. In the next section, the 
notation for variables has a special meaning. We assume that the joint probabilities 
necessary for the calculation of information are known. 

Let us begin with the fundamental quantities in information theory (Shannon and 
Weaver 1949). The Shannon entropy of a random variable i with probability p ( i )  is 
defined as 

The definition of the mutual information I (  i ;  j )  between random variables i and j can 
be rewritten in the following form: 

(2.2) H (  i )  = Hj(  i )  + I (  i ;  j ) .  
The first term Hj(i) is the conditional entropy defined as 

where p(i1j) is the conditional probability of i when the value of j is known. This 
represents the amount of information in variable i which is independent of variable 
j .  I (  i ;  j )  represents the information common to both variables. 

Equation (2.2) is the first step of our decomposition. In this equation the information 
of the variable i is decomposed into two terms where one is independent of the variable 
j and the other is not. The same type of formal decomposition can be carried out on 
the terms on the right-hand side of (2.2). In this way, we can inductively define a 
series of new quantities which we will call conditional mutual information. Note that 
these quantities are defined formally according to whether they are independent of a 
particular set of variables or not. 

The first inductive relation decomposes a series of conditional entropies and defines 
the conditional mutual information with two arguments, 

With the definition of the conditional entropy, 
= , I , , . ~ ( ~ ) + I I I ,  k ) .  (2.4) 
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where p (  i l j ,  , . . , , j n )  is the conditional probability of variable i when the values of 
variables j , ,  . . . , j ,  are known. Note that in (2.4) the conditional entropy on the 
left-hand side is decomposed into two terms on the right-hand side. The first represents 
the part of information independent of k, and the other represents the part common 
to k and i. The latter is the conditional mutual information of two arguments. 

The second inductive relation below defines the conditional mutual information 
with more than two arguments starting with those with two arguments, 

, , , ! , ( i , ;  . .  . ;  i , ) = I , l .  ,,,,,, h ( i , ;  . . .  ; i , ) + Z , l ,  ,,,,, ( i , ;  . . .  ; i n ;  k ) .  (2.6) 
By definition, the conditional mutual information represents the amount of informa- 

tion independent of the variables in its subscripts and common to the variables in its 
arguments. In appendix 1, we show that the conditional mutual information is invariant 
with respect to any permutations in its arguments or its subscripts. 

3. Definitions of information flow rates 

We consider a time series i (  n ) ,  -E < n < +a, of finite states. In the following calcula- 
tions of information, we need the probabilities of type p ( i o , .  . . , i n )  of the occurrence 
of a particular sequence of states i o , .  . . , i n  in the time series. In this notation, each 
ih is a random variable taking one of the states and the subscript denotes the relative 
time ordering among the random variables in the arguments. Since this numbering is 
relative, we have p ( i o , .  . . , in) = p ( i 0 + / ,  . . . , i n + / )  for any integer 1. When we consider 
two time series i (  n )  a n d j (  n ) ,  we write ik and j k  for the corresponding random variables. 
There are an infinite number of random variables i , ,  -CO< n < +-CO, for a time series. 

It is convenient for collection of terms in the decomposition to consider conditional 
mutual information with an infinite number of arguments and/or subscripts. We use 
the following abbreviation for the conditional mutual information: 

J ( i k , , .  . . . I i k , , ) = Z a l l t h e o t h e r \ a r ~ a h l e s ( i k ~ ;  . . . ;  i k , , ) .  (3.1) 
We call this type of quantity the fundamental information. The whole set of random 
variables is i n ,  --CO< n < +CO, for one time series, and in andj , ,  --CO < n <+a, for two 
time series. According to the definition of conditional mutual information, these 
represent the amount of information common to the variables in the arguments and 
independent of all the other variables. In other words, J( ik , ,  . . . , ik,,) means that the 
same information of this amount appears at time k ,  , . . . , k,  in the time series. From 
the definition of the random variables we have time translational symmetry 
J ( i k , ,  . . . , i k , , )  = J ( i k l . - , ,  . . . , i k , , + / )  for any integer 1. We do not discuss their conver- 
gence, since they appear only in the form of summations, which are obviously not 
divergent. 

Now we define the information flow rate in a single time series. We define the 
amount of new information that first appears in the time series at a particular time as 
the rate. This type of information is represented by fundamental information that have 
io and do  not have ik for k < 0 as their arguments. The rate is the summation of all 
the fundamental information. If  we denote by s a set of arguments, the information 
flow rate K ( i )  in the time series i is defined as follows: 

K ( i ) =  c J ( S ) .  (3.2) 

We will see in § 4 that this quantity is equivalent to KS entropy when the partition is 
appropriately taken. 

c 3 i 0 a n d  t a l k  f o r k < O  
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In some cases such as high-dimensional dynamical systems or systems consisting 
of many elements, the analysis of more than one time series is desirable. This type of 
analysis is one of the aims of the present formalism. In the following, we consider 
two time series i and j .  We will define nine types of information flow rate and derive 
the relations between them. 

The rate of information flow in two time series is the amount of new information 
that appears first in one or both of the two time series at a certain time. This type of 
information is represented by the fundamental information that does not have i k r  j k  
for k < 0 and has at least io or j , .  The summation of all this fundamental information 
is the total information flow rate K ( i ,  j ) ,  

K ( i ,  j )  = c J ( S ) .  
s 3 i o . j o a n d  s B i k , j r  for k < O  

(3 .3 )  

The other types of flow rates are defined as partial summations of this total summation. 
Among the fundamental information in K (  i, j ) ,  some information does not have 

the random variables of time series j as arguments. We denote by K,( i )  the summation 
of all this fundamental information, 

K,( i )  = c J ( s ) .  
r 3 # , , a n d s b i ~  f o r k < O a n d s B j , f o r a n y i  

(3 .4 )  

This represents the rate of information flow in the time series i independent of the 
time series j .  Likewise, we can define K i ( j )  which represents the rate of information 
flow in j independent of i. The summation of the other fundamental information in 
K (  i, j )  is the cross information flow rate K (  i ;  j ) .  This is the rate of information flowing 
between two time series. By definition, we have the following relation between the 
above four rates: 

K (  i, j )  = K i ( j )  + Kj(  i) + K (  i; j ) .  (3 .5)  

The rate K ( i )  of information flow in the time series i is the amount of new 
information that first appears in the time series at time 0. Using the time translational 
symmetry of the random variables, we can show that this is equal to the following 
summation: 

K ( i )  = K j (  i ) +  K ( i ;  j ) .  (3.6) 

We have a corresponding relation for the time series j :  

K ( j )  = K , ( j ) +  K ( i ;  j ) .  (3.7) 

Among the fundamental information in the summation for K ( i ;  j ) ,  we can recognise 
three types according to whether they have both io and j ,  or only one of them. The 
fundamental information containing both represents the information that appears in 
both time series at the same time. We denote by K ( i  and j )  the summation of all this 
information. The fundamental information which has io and not j o  represents the 
information that appears in the time series i first and then moves to j .  We denote by 
K ( i  to j )  the summation of all this information. In  the same way, we can define the 
information flow rate K (j to i )  from the time series j to i. By definition, we have the 
following relation: 

K ( i ;  j )  = K ( i  to j ) +  K ( j  to i )  + K (  i and j ) .  (3 .8)  
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4. Approximate expression for information flow rates 

We can approximate the various summations for flow rates by certain calculable 
quantities. 

The information flow rate in a single time series can be approximated by a series 
of conditional entropy, 

(4.1) K ( i )  = lim H,-,,, ,,-l(io). 
n - X  

The random variables have the same meaning as in 0 3. 
To see that this limit approximates the information flow rate (3.2), let us write the 

conditional entropies in the form of a summation of fundamental information. This 
is done by applying the rules (2.4) and (2.6) to the conditional entropies repeatedly 
with respect to the other random variables in the time series. We see that the conditional 
entropy Hl-,,, , l - , ( io)  is the summation of all the fundamental information that has io 
and not iLn, . . . , iL, as arguments. In the limit of infinite n, this is the precisely the 
summation for K ( i ) .  

The same expression as in the right-hand side of (4.1) appears when we attempt 
to obtain KS entropy by approximating the time series of a dynamical system by a 
Markov process. In this procedure, a string of symbols of infinite length is obtained 
from an orbit of the dynamical system in terms of a partition of the phase space 
(Alekseev and Yakobson 1981). Then the rule to produce the string is approximated 
by a sequence of Markov processes. The Shannon entropy of the string is calculated 
by (4.1), as a limit of Shannon entropies of the approximating Markov processes. The 
maximum Shannon entropy of the string over various partitions is the KS entropy, and 
the partition which gives the maximum value is called the generator. So the information 
flow rate K ( i )  is equivalent to KS entropy if the partition is a generator. 

The information flow rate K (  i, j )  in two time series is approximated by the following 
expression: 

(4.2) 

To show that this is the correct approximation, we have to obtain the expression for 
the conditional entropies in the above limit in the form of a summation of fundamental 
information. Since they have two arguments, we cannot directly apply the rules (2.4) 
and (2.6) to them. The following relation is derived in appendix 2: 

H,-,*,j -,,,..., , - , , , - , ( i o i j o )  = I ,  -,,, 1 _,,,.... ~ - , . , - , ( ~ O ; J O )  
. .  

+HE _,,, _,,...., i - l , J - I , Jo( i~)+H,  -,,, -,,, .,t-,,~-,,i0(Jo). (4.3) 
With this relation, we see that H ,-,,,, ~ ,,,.,,,, ~ ,,,- l ( i o ,  j,) is the summation of all the 
fundamental information which has at least io or j ,  and does not have 
z-,,, J-,,,  . . . , i - ,  , j - ,  as arguments. When we take the above limit, this is precisely the 
definition of K ( i ; j ) .  

The approximate expression for the cross information flow rate K ( i ;  j )  is obtained 
through the following relation which is obtained from (3.5)-(3.7): 

. .  

K ( i ;  j) = K ( i )  + K ( j )  - K ( i, j ) .  (4.4) 

(4.5) 

Substituting the approximation for K( i ) ,  K ( j )  and K ( i , j ) ,  we have 

K ( i ; j ) =  n - x  lim{H, -,,,..,, l-l(io)+H ,-,,..... J-l(jo)-Ht- ,,,,-,,,..,, l~l,,~l(io,jo)~. 
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By a simple calculation, we have 

(4.6) K (  i ;  j )  = lim{ I(iL,,, . . . , i o ;  J-,,,  . . . , j,) - I ( i - , , ,  . . . , i - ,  ; J- , , ,  . . . , j - , ) } .  

Due to the time translational symmetry of the random variables, (4.6) may be rewritten 
as follows for any integer I :  
K ( i ; j ) =  lim{I(i-,, , . . . ,  I , ; J ~ - ~ , . .  . , j / ) - z ( i - n  , . . . ,  z L 1 ; j f - , , , .  . . , j , - l ) } .  

We can choose 1 so that the convergence is rapid. This expression is used in the 
calculation of information flow rates in § 5. 

In the same way, we have the following expressions for the directed information 
flow rates: 

K ( i  a n d j )  = /\% I ,  _,,, , c ~ l , J ~ l ( i ~ ; j o )  (4.8) 

. .  . .  
n - r  

(4.7) . .  . .  
n - r  

K ( i  to j ) + K ( i  a n d j )  = lim ZJ-n, .  , J - i (  iLn ,  . . . , io; j ,) 
n-cC 

K ( j  to i)+ K(i and j )  = lim Z ,-,,, . ,,_, ( j - n ,  . . . , j , ;  io). 
n - a  

(4.9) 

(4.10) 

5. Numerical results on the BZ chain 

In this section, we calculate the various information flow rates by computer simulation 
using the expressions in 0 4. The model is a system of one-dimensional maps coupled 
as a linear chain. The one-dimensional map is obtained from the experimental results 
of the Belousov-Zhabotinsky chemical reaction. 

The BZ map is defined as follows: 

constant x {tan-'[200(x -0.2)] + tan-'(40)} 
i - b  (5.1) 1 + (2x)19 h ( X )  = 

where 

0.8[ 1 + (0.7)19] 
tan-'(30) + tan-'(40) 

constant = 

is defined so that ~ '~(0.35) =0.8. The time evolution equation for kth element of the 
chain x ( ~ )  is given by 

(5.2) 
where the coupling constant D=O.12. The coupling between two adjacent maps is 
uneven. The information is made to flow only from the kth element to the ( k +  1)th 
element of the chain. In the following calculation, we use a chain of length 10 
(1 S k s 10). At the lower end of the chain ((5.2) for k = l ) ,  we simply put x p ' =  0. 

X ( k )  n + l  - -fb,(xlj())+ D(x;k-"-x;k)) 

To this chain, we connect an extra one-dimensional map, 

[ ( ~ - 0 . 1 2 5 ) " ~ + C ~ ]  e - '+b  x < 0.3 
C2( l o x  e-'0"'3)19+ b x 3 0.3 

= (5 .3)  

where C, = 0.506 073 57 and C2 = 0.121 205 692 are empirically determined constants. 
This is the original BZ map. Equation (5.1) is a simpler version of this original. At 
b = 0.023 288 5279, the dynamics of this map is observed to be chaotic in computer 
simulation. We insert the coupling term D'x, to the third element of the chain, where 
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D’ = 0.2. Thus the information generated in map g is made to flow into the third 
element of the chain. 

In figure 1, a typical time series of the model is shown. Note that chaotic bursts 
or modulations of periods seem to transmit through the chain. 

By calculating the information flow rates, we attempt to describe this transmission 
of modulations of periods quantitatively. Since the direction of the information flow 
is obvious from the definition of the model, the cross information flow rate K (  i ;  j )  is 
enough to describe the movement of information in the model. 

To calculate the information, we have to choose a partition to translate a time 
series of real number into that of finite states. For our purposes, we must choose a 
partition so as to extract information contained in the modulations of periods of each 
element. To d o  this, the Lorenz plot of each element is helpful. In figure 2 ,  we depict 
the Lorentz plot of an  element (seventh element) of the chain which is typical of 
elements 3-10. It consists of islands corresponding to the periodic motion and detailed 
structure within each island which corresponds to other small fluctuations. It preserves 
substantially the shape of the original BZ map (5.1). For the original map, it is sufficient 
to divide the phase space into two at the peak point of the map to calculate the KS 

entropy. So to extract the information in modulations of periods, we simply have to 
divide the phase space of each element into two at a point between islands near the 
peak point of the original map. The dividing points thus chosen are 0.5, 0.5, 0.36, 0.5, 
0.34, 0.5, 0.34 and 0.5 for elements 3-10, respectively. The small differences in the 
positions of the dividing points d o  not affect the value of the information, as long as 
they are between the islands. Thus we neglect the information contained in the small 
fluctuation. The dividing point for the extra map (5.3) is the peak point of the map (0.3). 

We calculate the information flow rate (4.1) for each element and the cross 
information flow rate (4.7) between every two elements. The maximum value of n is 
12 for (4.1), and  8 for (4.7). The convergence of the results as n approaches the 
maximum value is confirmed. 

The results are shown in table 1. The information generated in the extra chaotic 
map is certainly transmitted to all the element 

Ex t rc  

1 

2 
3 

4 

5 

6 

7 
8 

9 

10 

of the chain as random modulations 

?me 

Figure 1. Typical time series of all the elements of the BZ chain.  The abscissa is time and  
the ordinate is phase space. The uppermost t ime series is that of the extra map,  and  time 
series of elements 1-10 are  depicted below in order.  Note that chaotic bursts and  modula- 
tions of periods transmit through the chain.  
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Figure 2. The Lorenz plot for the seventh element of the BZ chain. Reflecting the 
non-one-dimensional character of the dynamics, the plot is one to many. 

Table 1. The information flow rates obtained by computer simulation. The parameters of 
the BZ chain are the same as those in figure 1. A figure at row M and column N is the 
information flow rate from element M to N .  The information flow rate in an element M 
is found in row M and column M. A blank means zero by definition. The K S  entropy of 
the extra map is 0.298. Since the dynamics of elements 1 and 2 are periodic, these two 
elements are omitted from this table. The rates are calculated using (4.7) where n = 8 and 
/ is chosen so as to give the maximum value of 1( iL4 , .  . . , i o ;  ji-4,. . . ,ji). This gives the 
most rapid convergence of (4.7). Each figure is the average of the results of three different 
runs with different initial conditions. The largest deviation in these three runs is -0.002. 
The coupled maps are iterated 300 000 times in each run. 

Extra 0.119 0.095 0.090 0.055 0.048 0.039 0.040 0.033 
3 0.195 0.165 0.143 0.106 0.084 0.073 0.069 0.062 
4 0.218 0.177 0.134 0.105 0.093 0.089 0.079 
5 0.243 0.176 0.144 0.125 0.116 0.102 
6 0.195 0.149 0.131 0.117 0.105 
7 0.204 0.164 0.153 0.130 
8 0.178 0.158 0.138 
9 0.199 0.163 

10 0.173 

of periods. But this information alone cannot account for all the information flowing 
in each element. 

6. Summary and discussion 

We have defined the information flow rates of time series based on the concept of 
‘flow’. In the course of analysis of the movement of information, the decomposition 
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of information is useful. In  terms of this decomposition, the rate is an  appropriate 
summation of terms in the decomposition. The information flow rate in a time series 
defined here is shown to be equivalent to the KS entropy. Therefore we can consider 
the other various information flow rates defined here as natural extensions of K S  entropy. 

With these types of rate quantities we can argue how much information which is 
observed to flow in an  element is due to another element of the system. This is actually 
done for coupled BZ maps where the transmission of information is suspected from 
the previous calculation of mutual information (Matsumoto and Tsuda 1987). (Use 
of mutual information in a similar context is also found in Martien er a1 (1985), and 
Herzel and Ebeling (1985).) 

Calculation of information flow rates between every pair of elements reveals 
quantitatively the movements of information in the BZ chain. Although the calculation 
is limited to the information contained in the modulations of periods, the information 
generated in the external map is observed to flow throughout the system. 

Appendix 1 

In this appendix, we show inductively that the conditional mutual information is 
invariant with respect to any permutations in arguments or in subscripts. 

First, the conditional entropy H,,,  . ,,,,( i) is invariant to any permutations in its 
subscripts by definition (2.5).  

Second, the conditional mutual information with two arguments is invariant to any 
permutations in its subscripts and  in arguments by definition (2.4). 

Assuming the conditional mutual information with n and n - 1  arguments to be 
invariant to any permutations in its subscripts or  in its arguments, we show that this 
is valid for information with n + 1 arguments. From the definition (2.6) of the condi- 
tional mutual information with n + 1 arguments, we have 

From the assumption, we see that the term on the left-hand side is invariant with 
respect to any permutations in the subscripts or in the arguments i l ,  . . . , in .  For our 
purpose, it is enough to show that i,,+l can be exchanged with i , .  Using the definition 
(2.6) twice, we have 

(A1.2) 

(The last two lines are equal to 

H J ~ ,  . J , I I ( ' ~ ) -  H , ~ ,  . J P W . I I ( ~ ~ ) -  H J l ,  .J , , , , l , ,+1(~2)+ . J , , , . I , , + I , I I ( ~ ~ )  

for n = 2 . )  Since the last expression is symmetric with respect to il and i n + l ,  we can 
exchange them in the original expression. So the conditional mutual information with 
n + 1 arguments is invariant with respect to any permutations in its subscripts or in its 
arguments. This completes the inductive steps. 
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Appendix 2 

In this appendix we derive the following relation: 

H k ( i 0 , j O )  = I k ( i 0 ; j O )  + Hk,ln(iO) + H k . i o ( j O ) *  (A2.1) 

The conditional entropy can be written as a difference of two Shannon entropies, 

H k ( i 0 , j O )  = H ( k ,  i 0 , j o ) -  H ( k )  

= H (  k, io, io) - H (  k, i o )  + H (  k, i o )  - H (  k )  

= H k , i o G O )  + Hk ( i o ) .  (A2.2) 

Applying the decomposition rule (2.4) to the second term of the last line, we have 

H k ( i O )  = I k ( i O ; j O ) + H k , j o ( i O ) .  (A2.3) 

From (A2.2) and (A2.3), we have (A2.1). The above demonstration is correct if we 
replace k by a set of random variables. 
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